Show simple item record

dc.contributor.authorJanno, Jaan ( Orcid Icon 0000-0003-3809-6020 )
dc.date.accessioned2021-04-23T17:48:13Z
dc.date.available2021-04-23T17:48:13Z
dc.date.issued2004-05-03
dc.identifier.citationJanno, J. (2004). Recovering a time- and space-dependent kernel in a hyperbolic integro-differential equation from a restricted Dirichlet-to-Neumann Operator. Electronic Journal of Differential Equations, 2004(67), pp. 1-16.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13420
dc.description.abstractWe prove that a space- and time-dependent kernel occurring in a hyperbolic integro-differential equation in three space dimensions can be uniquely reconstructed from the restriction of the Dirichlet-to-Neumann operator of the equation into a set of Dirichlet data of the form of products of a fixed time-dependent coefficient times arbitrary space-dependent functions.en_US
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2004, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectInverse problemen_US
dc.subjectDirichlet-to-Neumann operatoren_US
dc.subjectHyperbolic equationsen_US
dc.subjectViscoelasticityen_US
dc.titleRecovering a time- and space-dependent kernel in a hyperbolic integro-differential equation from a restricted Dirichlet-to-Neumann Operatoren_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record