Show simple item record

dc.contributor.authorFanelli, Luca ( Orcid Icon 0000-0003-1714-1611 )
dc.contributor.authorLucente, Sandra ( Orcid Icon 0000-0002-1095-8402 )
dc.date.accessioned2021-04-26T20:23:32Z
dc.date.available2021-04-26T20:23:32Z
dc.date.issued2004-08-24
dc.identifier.citationFanelli, L., & Lucente, S. (2004). The critical case for a semilinear weakly hyperbolic equation. Electronic Journal of Differential Equations, 2004(101), pp. 1-13.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13455
dc.description.abstract

We prove a global existence result for the Cauchy problem, in the three-dimensional space, associated with the equation

utt - αλ (t)Δxu = -u|u|p(λ)-1

where αλ(t) ≥ 0 and behaves at (t - t0)λ close to some t0 > 0 with α(t0) = 0, and p(λ) = (3λ + 10) / (3λ + 2) with 3 ≤ p(λ) ≤ 5. This means that we deal with the superconformal, critical nonlinear case. Moreover we assume a small initial energy.

dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2004, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectGlobal existenceen_US
dc.subjectSemilinear wave equationsen_US
dc.titleThe critical case for a semilinear weakly hyperbolic equationen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record