Existence of solutions to n-dimensional pendulum-like equations
dc.contributor.author | Amster, Pablo ( ![]() | |
dc.contributor.author | De Napoli, Pablo L. ( ![]() | |
dc.contributor.author | Mariani, Maria Cristina ( ) | |
dc.date.accessioned | 2021-05-14T17:37:35Z | |
dc.date.available | 2021-05-14T17:37:35Z | |
dc.date.issued | 2004-10-20 | |
dc.identifier.citation | Amster, P., De Nápoli, P. L., & Mariani, M. C. (2004). Existence of solutions to n-dimensional pendulum-like equations. Electronic Journal of Differential Equations, 2004(125), pp. 1-8. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/13546 | |
dc.description.abstract | We study the elliptic boundary-value problem ∆u + g(x, u) = p(x) in Ω u|∂Ω = constant, ∫∂Ω ∂u/∂v = 0, where g is T-periodic in u, and Ω ⊂ ℝn is a bounded domain. We prove the existence of a solution under a condition on the average of the forcing term p. Also, we prove the existence of a compact interval Ip ⊂ ℝ such that the problem is solvable for p̃(x) = p(x) + c if and only if c ∈ Ip. | |
dc.format | Text | |
dc.format.extent | 8 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Texas State University-San Marcos, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2004, San Marcos, Texas: Texas State University-San Marcos and University of North Texas. | |
dc.subject | Pendulum-like equations | en_US |
dc.subject | Boundary value problems | en_US |
dc.subject | Topological methods | en_US |
dc.title | Existence of solutions to n-dimensional pendulum-like equations | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. | |
dc.description.department | Mathematics |