Show simple item record

dc.contributor.authorAmster, Pablo ( Orcid Icon 0000-0003-2829-7072 )
dc.contributor.authorDe Napoli, Pablo L. ( Orcid Icon 0000-0002-5224-6761 )
dc.contributor.authorMariani, Maria Cristina ( )
dc.date.accessioned2021-05-14T17:37:35Z
dc.date.available2021-05-14T17:37:35Z
dc.date.issued2004-10-20
dc.identifier.citationAmster, P., De Nápoli, P. L., & Mariani, M. C. (2004). Existence of solutions to n-dimensional pendulum-like equations. Electronic Journal of Differential Equations, 2004(125), pp. 1-8.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13546
dc.description.abstractWe study the elliptic boundary-value problem ∆u + g(x, u) = p(x) in Ω u|∂Ω = constant, ∫∂Ω ∂u/∂v = 0, where g is T-periodic in u, and Ω ⊂ ℝn is a bounded domain. We prove the existence of a solution under a condition on the average of the forcing term p. Also, we prove the existence of a compact interval Ip ⊂ ℝ such that the problem is solvable for p̃(x) = p(x) + c if and only if c ∈ Ip.
dc.formatText
dc.format.extent8 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2004, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectPendulum-like equationsen_US
dc.subjectBoundary value problemsen_US
dc.subjectTopological methodsen_US
dc.titleExistence of solutions to n-dimensional pendulum-like equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record