Show simple item record

dc.contributor.authorDrame, Abdou K. ( )
dc.date.accessioned2021-05-14T19:15:04Z
dc.date.available2021-05-14T19:15:04Z
dc.date.issued2004-11-10
dc.identifier.citationDrame, A. K. (2004). A semilinear parabolic boundary-value problem in bioreactors theory. Electronic Journal of Differential Equations, 2004(129), pp. 1-13.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13550
dc.description.abstractIn this paper, we analyze a dynamical model describing the behavior of bioreactors with diffusion. We obtain a convergence result for solutions of asymptotically autonomous semilinear parabolic equations to steady state solutions of the limiting equations. This allows us to establish the convergence of solutions of the initial value problem that describes the dynamics of the bioreactor.en_US
dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2004, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectBioreactorsen_US
dc.subjectSemilinear equationsen_US
dc.subjectAsymptotically autonomousen_US
dc.subjectOmega limit setsen_US
dc.titleA semilinear parabolic boundary-value problem in bioreactors theoryen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record