Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions
dc.contributor.author | An, Yulian ( ) | |
dc.contributor.author | Ma, Ruyun ( ) | |
dc.date.accessioned | 2021-05-17T16:50:46Z | |
dc.date.available | 2021-05-17T16:50:46Z | |
dc.date.issued | 2004-11-29 | |
dc.identifier.citation | An, Y., & Ma, R. (2004). Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions. Electronic Journal of Differential Equations, 2004(142), pp. 1-9. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/13563 | |
dc.description.abstract | We study the uniqueness of positive solutions of the boundary-value problem u'' + α(t)u' + ƒ(t, u) = 0, t ∈ (0, b) u(0) = 0 = 0, u(b) = 0, where 0 < b < ∞, α ∈ C1[0, ∞) and ƒ ∈ C1([0, ∞) x [0, ∞), [0, ∞)) satisfy suitable conditions. The proof of our main result is based on the shooting method and the Sturm comparison theorem. | |
dc.format | Text | |
dc.format.extent | 9 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Texas State University-San Marcos, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2004, San Marcos, Texas: Texas State University-San Marcos and University of North Texas. | |
dc.subject | Boundary value problems | en_US |
dc.subject | Positive solutions | en_US |
dc.subject | Uniqueness | en_US |
dc.subject | Shooting method | en_US |
dc.subject | Sturm comparison theorem | en_US |
dc.title | Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. | |
dc.description.department | Mathematics |