Show simple item record

dc.contributor.authorHetzer, Georg ( )
dc.date.accessioned2021-05-17T20:15:59Z
dc.date.available2021-05-17T20:15:59Z
dc.date.issued1996-07-23
dc.identifier.citationHetzer, G. (1996). Global Existence, Uniqueness, and Continuous Dependence for a Reaction-Diffusion Equation with Memory. Electronic Journal of Differential Equations, 1996(05), pp. 1-16.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13571
dc.description.abstractGlobal existence, uniqueness and continuous dependence on initial data are established for a quasilinear functional reaction-diffusion equation which arises from a two-dimensional energy balance climate model. Our approach relies heavily on the so-called stability estimates for linear evolution equations of parabolic type (cf. [6]).en_US
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1996, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectReaction-diffusion equationsen_US
dc.subjectMemoryen_US
dc.subjectEnergy balance climate modelsen_US
dc.subjectQuasilinear parabolic functional evolution equationsen_US
dc.titleGlobal Existence, Uniqueness, and Continuous Dependence for a Reaction-Diffusion Equation with Memoryen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record