An Lp-approach for the study of degenerate parabolic equations
dc.contributor.author | Labbas, Rabah ( ) | |
dc.contributor.author | Medeghri, Ahmed ( ![]() | |
dc.contributor.author | Sadallah, Boubaker-Khaled ( ) | |
dc.date.accessioned | 2021-05-20T19:42:39Z | |
dc.date.available | 2021-05-20T19:42:39Z | |
dc.date.issued | 2005-03-29 | |
dc.identifier.citation | Labbas, R., Medeghri, A., & Sadallah, B. K. (2005). An Lp-approach for the study of degenerate parabolic equations. Electronic Journal of Differential Equations, 2005(36), pp. 1-20. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/13610 | |
dc.description.abstract | We give regularity results for solutions of a parabolic equation in non-rectangular domains U = ∪t∈]0, 1[ {t} x It with It = {x : 0 < x < φ(t)}. The optimal regularity is obtained in the framework of the space Lp with p > 3/2 by considering the following cases: (1) When φ(t) = tα, α > 1/2 with a p > 1 + α. We use Labbas-Terreni results [11]. (2) When φ(t) = t1/2 with a right-hand side taken only in Lp(U). Our approach make use of the celebrated Dore-Venni results [2]. | |
dc.format | Text | |
dc.format.extent | 20 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Texas State University-San Marcos, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2005, San Marcos, Texas: Texas State University-San Marcos and University of North Texas. | |
dc.subject | Sum of linear operators | en_US |
dc.subject | Diffusion equation | en_US |
dc.subject | Non rectangular domain | en_US |
dc.subject | Bounded imaginary powers of operators | en_US |
dc.title | An Lp-approach for the study of degenerate parabolic equations | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. | |
dc.description.department | Mathematics |