Show simple item record

dc.contributor.authorSkalak, Zdenek ( )
dc.date.accessioned2021-05-24T15:43:51Z
dc.date.available2021-05-24T15:43:51Z
dc.date.issued2005-04-24
dc.identifier.citationSkalak, Z. (2005). Regularity of weak solutions of the Navier-Stokes equations near the smooth boundary. Electronic Journal of Differential Equations, 2005(45), pp. 1-11.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13629
dc.description.abstractAny weak solution u of the Navier-Stokes equations in a bounded domain satisfying the Prodi-Serrin's conditions locally near the smooth boundary cannot have singular points there. This local-up-to-the-boundary boundedness of u in space-time implies the Holder continuity of u up-to-the-boundary in the space variables.en_US
dc.formatText
dc.format.extent11 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2005, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectNavier-Stokes equationsen_US
dc.subjectWeak solutionsen_US
dc.subjectBoundary regularityen_US
dc.titleRegularity of weak solutions of the Navier-Stokes equations near the smooth boundaryen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record