Show simple item record

dc.contributor.authorPersson, Mikael ( )
dc.date.accessioned2021-05-24T18:08:26Z
dc.date.available2021-05-24T18:08:26Z
dc.date.issued2005-05-24
dc.identifier.citationPersson, M. (2006). On the Aharonov-Casher formula for different self-adjoint extensions of the Pauli operator with singular magnetic field. Electronic Journal of Differential Equations, 2005(55), pp. 1-16.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13638
dc.description.abstractTwo different self-adjoint Pauli extensions describing a spin-1/2 two-dimensional quantum system with singular magnetic field are studied. An Aharonov-Casher type formula is proved for the maximal Pauli extension and the possibility of approximation of the two different self-adjoint extensions by operators with regular magnetic fields is investigated.en_US
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2005, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectSchrödinger operatorsen_US
dc.subjectSpectral analysisen_US
dc.titleOn the Aharonov-Casher formula for different self-adjoint extensions of the Pauli operator with singular magnetic fielden_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record