Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation
dc.contributor.author | Panthee, Mahendra ( ![]() | |
dc.date.accessioned | 2021-05-24T20:26:59Z | |
dc.date.available | 2021-05-24T20:26:59Z | |
dc.date.issued | 2005-06-10 | |
dc.identifier.citation | Panthee, M. (2005). Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation. Electronic Journal of Differential Equations, 2005(59), pp. 1-12. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/13642 | |
dc.description.abstract | We generalize a method introduced by Bourgain in [2] based on complex analysis to address two spatial dimensional models and prove that if a sufficiently smooth solution to the initial value problem associated with the Kadomtsev-Petviashvili (KP-II) equation (ut + uxxx + uux)x + uyy = 0, (x, y) ∈ ℝ2, t ∈ ℝ, is supported compactly in a nontrivial time interval then it vanishes identically. | |
dc.format | Text | |
dc.format.extent | 12 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Texas State University-San Marcos, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2005, San Marcos, Texas: Texas State University-San Marcos and University of North Texas. | |
dc.subject | Dispersive equations | en_US |
dc.subject | KP equation | en_US |
dc.subject | Unique continuation property | en_US |
dc.subject | Smooth solution | en_US |
dc.subject | Compact support | en_US |
dc.title | Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. | |
dc.description.department | Mathematics |