Show simple item record

dc.contributor.authorPanthee, Mahendra ( Orcid Icon 0000-0002-2003-8490 )
dc.date.accessioned2021-05-24T20:26:59Z
dc.date.available2021-05-24T20:26:59Z
dc.date.issued2005-06-10
dc.identifier.citationPanthee, M. (2005). Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation. Electronic Journal of Differential Equations, 2005(59), pp. 1-12.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13642
dc.description.abstractWe generalize a method introduced by Bourgain in [2] based on complex analysis to address two spatial dimensional models and prove that if a sufficiently smooth solution to the initial value problem associated with the Kadomtsev-Petviashvili (KP-II) equation (ut + uxxx + uux)x + uyy = 0, (x, y) ∈ ℝ2, t ∈ ℝ, is supported compactly in a nontrivial time interval then it vanishes identically.
dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2005, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectDispersive equationsen_US
dc.subjectKP equationen_US
dc.subjectUnique continuation propertyen_US
dc.subjectSmooth solutionen_US
dc.subjectCompact supporten_US
dc.titleUnique continuation property for the Kadomtsev-Petviashvili (KP-II) equationen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record