Show simple item record

dc.contributor.authorIzquierdo B., Gustavo ( )
dc.contributor.authorLopez Garza, Gabriel ( Orcid Icon 0000-0002-7874-0370 )
dc.date.accessioned2021-06-22T16:07:38Z
dc.date.available2021-06-22T16:07:38Z
dc.date.issued2005-10-17
dc.identifier.citationIzquierdo B., G., & Lopez Garza, G. (2005). A resonance problem for the p-laplacian in ℝN. Electronic Journal of Differential Equations, 2005(112), pp. 1-8.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13784
dc.description.abstract

We show the existence of a weak solution for the problem

-∆pu = λ1h(x)|u|p-2 u + α(x)g(u) + ƒ(x), u ∈ D1,p (ℝN),

where, 2 < p < N, λ1 is the first eigenvalue of the p-Laplacian on D1,p(ℝN) relative to the radially symmetric weight h(x) = h(|x|). In this problem, g(s) is a bounded function for all s ∈ ℝ, α ∈ L(p*)' (ℝN) ∩ L (ℝN) and ƒ ∈ L(p*)' (ℝN). To establish an existence result, we employ the Saddle Point Theorem of Rabinowitz [9] and an improved Poincaré inequality from an article of Alziary, Fleckinger and Takáč [2].

dc.formatText
dc.format.extent8 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2005, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectResonanceen_US
dc.subjectp-Laplacianen_US
dc.subjectImproved Poincare inequalityen_US
dc.titleA resonance problem for the p-laplacian in ℝNen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.holderCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record