Existence, uniqueness and constructive results for delay differential equations
Date
2005-10-27Metadata
Show full metadataAbstract
Here, we investigate boundary-value problems (BVPs) for systems of second-order, ordinary, delay-differential equations. We introduce some differential inequalities such that all solutions (and their derivatives) to a certain family of BVPs satisfy some a priori bounds. The results are then applied, in conjunction with topological arguments, to prove the existence of solutions. We then apply earlier abstract theory of Petryshyn to formulate some constructive results under which solutions to BVPs for systems of second-order, ordinary, delay-differential equations are A-solvable and may be approximated via a Galerkin method. Finally, we provide some differential inequalities such that solutions to our equations are unique.
Citation
Eloe, P. W., Raffoul, Y. N., & Tisdell, C. C. (2005). Existence, uniqueness and constructive results for delay differential equations. Electronic Journal of Differential Equations, 2005(121), pp. 1-11.Rights License

This work is licensed under a Creative Commons Attribution 4.0 International License.