Show simple item record

dc.contributor.authorDong, Bo-Qing ( )
dc.date.accessioned2021-07-13T15:01:47Z
dc.date.available2021-07-13T15:01:47Z
dc.date.issued2005-11-07
dc.identifier.citationDong-B. Q. (2005). Decay of solutions to equations modelling incompressible bipolar non-newtonian fluids. Electronic Journal of Differential Equations, 2005(125), pp. 1-13.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13850
dc.description.abstractThis article concerns systems of equations that model incompressible bipolar non-Newtonian fluid motion in the whole space ℝn. Using the improved Fourier splitting method, we prove that a weak solution decays in the L2 norm at the same rate as (1 + t)-n/4 as the time t approaches infinity. Also we obtain optimal L2 error-estimates for Newtonian and Non-Newtonian flows.
dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2005, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectDecayen_US
dc.subjectBipolar non-Newtonian fluidsen_US
dc.subjectFourier splitting methoden_US
dc.titleDecay of solutions to equations modelling incompressible bipolar non-newtonian fluidsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record