Show simple item record

dc.contributor.authorEnglander, Janos ( Orcid Icon 0000-0003-4982-0029 )
dc.contributor.authorSimon, Peter L. ( Orcid Icon 0000-0002-2183-1853 )
dc.date.accessioned2021-07-14T17:11:58Z
dc.date.available2021-07-14T17:11:58Z
dc.date.issued2006-01-24
dc.identifier.citationEngländer, J., & Simon, P. L. (2006). Nonexistence of solutions to KPP-type equations of dimension greater than or equal to one. Electronic Journal of Differential Equations, 2006(09), pp. 1-6.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13882
dc.description.abstractIn this article, we consider a semilinear elliptic equations of the form ∆u + ƒ(u) = 0, where ƒ is a concave function. We prove for arbitrary dimensions that there is no solution bounded in (0, 1). The significance of this result in probability theory is also discussed.
dc.formatText
dc.format.extent6 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectKPP-equationen_US
dc.subjectSemilinear elliptic equationsen_US
dc.subjectPositive bounded solutionsen_US
dc.subjectBranching Brownian-motionen_US
dc.titleNonexistence of solutions to KPP-type equations of dimension greater than or equal to oneen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record