Show simple item record

dc.contributor.authorKassi, M'hamed ( )
dc.date.accessioned2021-07-14T18:17:10Z
dc.date.available2021-07-14T18:17:10Z
dc.date.issued2006-01-31
dc.identifier.citationKassi, M. (2006). A Liouville theorem for F-harmonic maps with finite F-energy. Electronic Journal of Differential Equations, 2006(15), pp. 1-9.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13888
dc.description.abstractLet (M, g) be a m-dimensional complete Riemannian manifold with a pole, and (N, h) a Riemannian manifold. Let F : ℝ+ → ℝ+ be a strictly increasing C2 function such that F(0) = 0 and dF := sup(tF′ (t)) (F(t))-1) < ∞. We show that if dF < m/2, then every F-harmonic map u : M → N with finite F-energy (i.e. a local extremal of EF(u) := ∫M F(|du|2 /2) dVg and EF(u) is finite) is a constant map provided that the radial curvature of M satisfies a pinching condition depending to dF.
dc.formatText
dc.format.extent9 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectF-harmonic mapsen_US
dc.subjectLiouville proprietyen_US
dc.subjectStokes formulaen_US
dc.subjectComparison theoremen_US
dc.titleA Liouville theorem for F-harmonic maps with finite F-energyen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record