Show simple item record

dc.contributor.authorBriozzo, Adriana C. ( Orcid Icon 0000-0001-8756-7891 )
dc.contributor.authorTarzia, Domingo A. ( Orcid Icon 0000-0002-2813-0419 )
dc.date.accessioned2021-07-15T16:00:02Z
dc.date.available2021-07-15T16:00:02Z
dc.date.issued2006-02-09
dc.identifier.citationBriozzo, A. C., & Tarzia, D. A. (2006). Existence and uniqueness for one-phase Stefan problems of non-classical heat equations with temperature boundary condition at a fixed face. Electronic Journal of Differential Equations, 2006(21), pp. 1-16.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13894
dc.description.abstractWe prove the existence and uniqueness, local in time, of a solution for a one-phase Stefan problem of a non-classical heat equation for a semi-infinite material with temperature boundary condition at the fixed face. We use the Friedman-Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations.en_US
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectStefan problemen_US
dc.subjectNon-classical heat equationen_US
dc.subjectFree boundary problemen_US
dc.subjectSimilarity solutionen_US
dc.subjectNonlinear heat sourcesen_US
dc.subjectVolterra integral equationsen_US
dc.titleExistence and uniqueness for one-phase Stefan problems of non-classical heat equations with temperature boundary condition at a fixed faceen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record