Show simple item record

dc.contributor.authorWu, Shun-Tang ( )
dc.date.accessioned2021-07-16T14:31:52Z
dc.date.available2021-07-16T14:31:52Z
dc.date.issued2006-04-06
dc.identifier.citationWu, S. T. (2006). Blow-up of solutions for an integro-differential equation with a nonlinear source. Electronic Journal of Differential Equations, 2006(45), pp. 1-9.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13918
dc.description.abstractWe study the nonlinear viscoelastic wave equation utt -Δu + ∫t0 g(t - s) Δu(s)ds = |u|pu, in a bounded domain, with the initial and Dirichlet boundary conditions. By modifying the method in [15], we prove that there are solutions, under some conditions on the initial data, which blow up in finite time with nonpositive initial energy as well as positive initial energy. Estimates of the lifespan of solutions are also given.
dc.formatText
dc.format.extent9 pages
dc.format.medium1 file (.pdf
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectBlow-upen_US
dc.subjectLife spanen_US
dc.subjectViscoelasticen_US
dc.subjectIntegro-differential equationen_US
dc.titleBlow-up of solutions for an integro-differential equation with a nonlinear sourceen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record