Show simple item record

dc.contributor.authorYao, Zheng'an ( )
dc.contributor.authorZhou, Wenshu ( )
dc.date.accessioned2021-07-19T16:15:44Z
dc.date.available2021-07-19T16:15:44Z
dc.date.issued2006-07-07
dc.identifier.citationYao, Z., & Zhou, W. (2006). Weak solutions for quasilinear degenerate parabolic systems. Electronic Journal of Differential Equations, 2006(70), pp. 1-18.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13943
dc.description.abstractThis paper concerns the initial Dirichlet boundary-value problem for a class of quasilinear degenerate parabolic systems. Due to the degeneracies, the problem does not have classical solutions in general. Combining the special form of the system, a proper concept of a weak solution is presented, then the existence and uniqueness of weak solutions are proved. Moreover, the asymptotic behavior of weak solutions will also be discussed.en_US
dc.formatText
dc.format.extent18 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectQuasilinear degenerate parabolic systemen_US
dc.subjectWeak solutionen_US
dc.subjectExistenceen_US
dc.subjectUniquenessen_US
dc.subjectAsymptotic behavioren_US
dc.titleWeak solutions for quasilinear degenerate parabolic systemsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record