Show simple item record

dc.contributor.authorMahmoudi, Fethi ( )
dc.date.accessioned2021-07-19T16:23:20Z
dc.date.available2021-07-19T16:23:20Z
dc.date.issued2006-07-07
dc.identifier.citationMahmoudi, F. (2006). Energy quantization for Yamabe's problem in conformal dimension. Electronic Journal of Differential Equations, 2006(71), pp. 1-17.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13944
dc.description.abstract

Rivière [11] proved an energy quantization for Yang-Mills fields defined on n-dimensional Riemannian manifolds, when n is larger than the critical dimension 4. More precisely, he proved that the defect measure of a weakly converging sequence of Yang-Mills fields is quantized, provided the W norm of their curvature is uniformly bounded. In the present paper, we prove a similar quantization phenomenon for the nonlinear elliptic equation

-Δu = u|u|4/(n-2),

in a subset Ω of ℝn.

dc.formatText
dc.format.extent17 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectCritical exponentsen_US
dc.subjectLorentz spacesen_US
dc.subjectQuantization phenomenaen_US
dc.titleEnergy quantization for Yamabe's problem in conformal dimensionen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record