Strong global attractor for a quasilinear nonlocal wave equation on ℝN
dc.contributor.author | Papadopoulos, Perikles G. ( ![]() | |
dc.contributor.author | Stavrakakis, Nikolaos M. ( ) | |
dc.date.accessioned | 2021-07-19T17:23:31Z | |
dc.date.available | 2021-07-19T17:23:31Z | |
dc.date.issued | 2006-07-12 | |
dc.identifier.citation | Papadopoulos, P. G., & Stavrakakis, N. M. (2006). Strong global attractor for a quasilinear nonlocal wave equation on ℝN. Electronic Journal of Differential Equations, 2006(77), pp. 1-10. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/13950 | |
dc.description.abstract | We study the long time behavior of solutions to the nonlocal quasilinear dissipative wave equation utt - ϕ(x) ∥∇u(t)∥2 ∆u + δut + |u|α u = 0, in ℝN, t ≥ 0, with initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x). We consider the case N ≥ 3, δ > 0, and (ϕ(x))-1 a positive function in LN/2(ℝN) ∩ L∞(ℝN). The existence of a global attractor is proved in the strong topology of the space D1,2(ℝN) x L2g(ℝN). | |
dc.format | Text | |
dc.format.extent | 10 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Texas State University-San Marcos, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas. | |
dc.subject | Quasilinear hyperbolic equations | en_US |
dc.subject | Kirchhoff strings | en_US |
dc.subject | Global attractor | en_US |
dc.subject | Unbounded domains | en_US |
dc.subject | Generalized Sobolev spaces | en_US |
dc.subject | Weighted Lp spaces | en_US |
dc.title | Strong global attractor for a quasilinear nonlocal wave equation on ℝN | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. | |
dc.description.department | Mathematics |