Show simple item record

dc.contributor.authorAfrouzi, Ghasem Alizadeh ( Orcid Icon 0000-0001-8794-3594 )
dc.contributor.authorHeidarkhani, Shapour ( Orcid Icon 0000-0002-7908-8388 )
dc.date.accessioned2021-07-20T18:10:50Z
dc.date.available2021-07-20T18:10:50Z
dc.date.issued2006-10-02
dc.identifier.citationAfrouzi, G. A., & Heidarkhani, S. (2006). A minimax inequality for a class of functionals and applications to the existence of solutions for two-point boundary-value problems. Electronic Journal of Differential Equations, 2006(121), pp. 1-10.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13994
dc.description.abstract

In this paper, we establish an equivalent statement to minimax inequality for a special class of functionals. As an application, we prove the existence of three solutions to the Dirichlet problem

-u″(x) + m(x)u(x) = λƒ(x, u(x)), x ∈ (α, b),
u(α) = u(b) = 0,

where λ > 0, ƒ : [α, b] x ℝ → ℝ is a continuous function which changes sign on [α, b] x ℝ and m(x) ∈ C ([α, b]) is a positive function.

dc.formatText
dc.format.extent10 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectMinimax inequalityen_US
dc.subjectCritical pointen_US
dc.subjectThree solutionsen_US
dc.subjectMultiplicity resultsen_US
dc.subjectDirichlet problemen_US
dc.titleA minimax inequality for a class of functionals and applications to the existence of solutions for two-point boundary-value problemsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record