Show simple item record

dc.contributor.authorYu, Yifeng ( )
dc.date.accessioned2021-07-20T18:26:39Z
dc.date.available2021-07-20T18:26:39Z
dc.date.issued2006-10-06
dc.identifier.citationYu, Y. (2006). A remark on C2 infinity-harmonic functions. Electronic Journal of Differential Equations, 2006(122), pp. 1-4.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13995
dc.description.abstractIn this paper, we prove that any nonconstant, C2 solution of the infinity Laplacian equation uxi uxj uxixj = 0 can not have interior critical points. This result was first proved by Aronsson [2] in two dimensions. When the solution is C4, Evans [6] established a Harnack inequality for |Du|, which implies that non-constant C4 solutions have no interior critical points for any dimension. Our method is strongly motivated by the work in [6].
dc.formatText
dc.format.extent4 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2006, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectInfinity Laplacian equationen_US
dc.subjectInfinity harmonic functionen_US
dc.subjectViscosity solutionsen_US
dc.titleA remark on C2 infinity-harmonic functionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record