Show simple item record

dc.contributor.authorRath, Radhanath ( Orcid Icon 0000-0001-7375-4354 )
dc.contributor.authorMishra, Prayag Prasad ( )
dc.contributor.authorPadhi, Laxmi Narayan ( )
dc.date.accessioned2021-08-02T16:46:11Z
dc.date.available2021-08-02T16:46:11Z
dc.date.issued2007-01-02
dc.identifier.citationRath, R., Mishra, P. P., & Padhy, L. N. (2007). On oscillation and asymptotic behaviour of a neutral differential equation of first order with positive and negative coefficients. Electronic Journal of Differential Equations, 2007(01), pp. 1-7.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14151
dc.description.abstractIn this paper sufficient conditions are obtained so that every solution of (y(t) - p(t)y(t - τ))′ + Q(t)G(y(t - σ)) - U(t)G(y(t - α)) = ƒ(t) tends to zero or to ±∞ as t tends to ∞, where τ, σ, α are positive real numbers, p, ƒ ∈ C([0, ∞), R), Q, U ∈ C([0, ∞), [0, ∞)), and G ∈ C(R, R), G is non decreasing with xG(x) > 0 for x ≠ 0. The two primary assumptions in this paper ∫t0 Q(t) = ∞ and ∫∞t0 U(t) < ∞. The results hold when G is linear, super linear, or sublinear and also hold when ƒ(t) ≡ 0. This paper generalizes and improves some of the recent results in [5, 7, 8, 10].
dc.formatText
dc.format.extent7 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectOscillatory solutionen_US
dc.subjectNonoscillatory solutionen_US
dc.subjectAsymptotic behaviouren_US
dc.titleOn oscillation and asymptotic behaviour of a neutral differential equation of first order with positive and negative coefficientsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record