Show simple item record

dc.contributor.authorMatheus, Carlos ( )
dc.date.accessioned2021-08-02T18:20:28Z
dc.date.available2021-08-02T18:20:28Z
dc.date.issued2007-01-02
dc.identifier.citationMatheus, C. (2021). Global well-posedness of NLS-KdV systems for periodic functions. Electronic Journal of Differential Equations, 2007(07), pp. 1-20.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14157
dc.description.abstractWe prove that the Cauchy problem of the Schrödinger-Korteweg-deVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space H1 x H1. More precisely, we show that the non-resonant NLS-KdV system is globally well-posed for initial data in Hs(T) x Hs(T) with s > 11/13 and the resonant NLS-KdV system is globally well-posed with s > 8/9. The strategy is to apply the I-method used by Colliander, Keel, Staffilani, Takaoka and Tao. By doing this, we improve the results by Arbieto, Corcho and Matheus concerning the global well-posedness of NLS-KdV systems.
dc.formatText
dc.format.extent20 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectGlobal well-posednessen_US
dc.subjectSchrödinger-Korteweg-de Vries systemen_US
dc.subjectI-methoden_US
dc.titleGlobal well-posedness of NLS-KdV systems for periodic functionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record