Show simple item record

dc.contributor.authorFeng, Hanying ( )
dc.contributor.authorFeng, Meiqiang ( Orcid Icon 0000-0002-5669-0851 )
dc.contributor.authorJiang, Ming ( )
dc.contributor.authorGe, Weigao ( )
dc.date.accessioned2021-08-03T18:19:14Z
dc.date.available2021-08-03T18:19:14Z
dc.date.issued2007-02-04
dc.identifier.citationFeng, H., Feng, M., Jiang, M., Ge, W. (2007). Multiple positive solutions for fourth-order three-point p-Laplacian boundary-value problems. Electronic Journal of Differential Equations, 2007(23), pp. 1-10.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14173
dc.description.abstract

In this paper, we study the three-point boundary-value problem for a fourth-order one-dimensional p-Laplacian differential equation

p(u″(t)))″ + α(t)ƒ(u(t)) = 0, t ∈ (0, 1),

subject to the nonlinear boundary conditions:

u(0) = ξu(1), u′(1) = ηu′(0),
p(u″(0))′ = α1p(u″(δ))′, u″(1) = p-1√β1u″(δ),

where φp(s) = |s|p-2s, p > 1. Using the five functional fixed point theorem due to Avery, we obtain sufficient conditions for the existence of at least three positive solutions.

dc.formatText
dc.format.extent10 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectFourth-order boundary-value problemen_US
dc.subjectOne-dimensional p-Laplacianen_US
dc.subjectFive functional fixed point theoremen_US
dc.subjectPositive solutionen_US
dc.titleMultiple positive solutions for fourth-order three-point p-Laplacian boundary-value problemsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record