Show simple item record

dc.contributor.authorAizicovici, Sergiu ( )
dc.contributor.authorReich, Simeon ( )
dc.contributor.authorZaslavski, Alexander J. ( )
dc.date.accessioned2021-08-04T13:35:02Z
dc.date.available2021-08-04T13:35:02Z
dc.date.issued2007-02-22
dc.identifier.citationAizicovici, S., Reich, S., & Zaslavski, A. J. (2007). Stability of convergent continuous descent methods. Electronic Journal of Differential Equations, 2007(31), pp. 1-6.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14182
dc.description.abstractWe consider continuous descent methods for the minimization of convex functions defined on a general Banach space. In our previous work we showed that most of them (in the sense of Baire category) converged. In the present paper we show that convergent continuous descent methods are stable under small perturbations.en_US
dc.formatText
dc.format.extent6 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectComplete uniform spaceen_US
dc.subjectConvex functionen_US
dc.subjectDescent methoden_US
dc.subjectGeneric propertyen_US
dc.subjectInitial value problemen_US
dc.titleStability of convergent continuous descent methodsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record