Show simple item record

dc.contributor.authorTersenov, Aris ( )
dc.date.accessioned2021-08-06T13:59:02Z
dc.date.available2021-08-06T13:59:02Z
dc.date.issued2007-04-17
dc.identifier.citationTersenov, A. S. (2007). Sufficient conditions for nonexistence of gradient blow-up for nonlinear parabolic equations. Electronic Journal of Differential Equations, 2007(57), pp. 1-12.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14218
dc.description.abstractIn this paper we study the initial-boundary value problems for nonlinear parabolic equations without Bernstein-Nagumo condition. Sufficient conditions guaranteeing the nonexistence of gradient blow-up are formulated. In particular, we show that for a wide class of nonlinearities the Lipschitz continuity in the space variable together with the strict monotonicity with respect to the solution guarantee that gradient blow-up cannot occur at the boundary or in the interior of the domain.en_US
dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectBernstein-Nagumo conditionen_US
dc.subjectGradient blow-upen_US
dc.subjectA priori estimates nonlinear parabolic equationen_US
dc.titleSufficient conditions for nonexistence of gradient blow-up for nonlinear parabolic equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record