Show simple item record

dc.contributor.authorGulgowski, Jacek ( Orcid Icon 0000-0002-7706-9263 )
dc.date.accessioned2021-08-11T20:13:23Z
dc.date.available2021-08-11T20:13:23Z
dc.date.issued2007-06-14
dc.identifier.citationGulgowski, J. (2007). Bernstein approximations of Dirichlet problems for elliptic operators on the plane. Electronic Journal of Differential Equations, 2007(86), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14281
dc.description.abstract

We study the finitely dimensional approximations of the elliptic problem

(Lu)(x, y) + φ(λ, (x, y), u(x, y)) = 0 for (x, y) ∈ Ω
u(x, y) = 0 for (x, y) ∈ ∂Ω,

defined for a smooth bounded domain Ω on a plane. The approximations are derived from Bernstein polynomials on a triangle or on a rectangle containing Ω. We deal with approximations of global bifurcation branches of nontrivial solutions as well as certain existence facts.

dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectDirichlet problemsen_US
dc.subjectBernstein polynomialsen_US
dc.subjectGlobal bifurcationen_US
dc.titleBernstein approximations of Dirichlet problems for elliptic operators on the planeen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record