Show simple item record

dc.contributor.authorHoel, Hakon ( )
dc.identifier.citationHoel, H. A. (2007). A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation. Electronic Journal of Differential Equations, 2007(100), pp. 1-22.en_US

We consider a numerical scheme for entropy weak solutions of the DP (Degasperis-Procesi) equation ut - uxxt + 4uux = 3uxuxx + uuxxx. Multi-shockpeakons, functions of the form

u(x, t) = ∑ni=1 (mi(t) - sign(x - xi(t))ss(t))e-|x-xi(t)|,

are solutions of the DP equation with a special property; their evolution in time is described by a dynamical system of ODEs. This property makes multi-shockpeakons relatively easy to simulate numerically. We prove that if we are given a non-negative initial function u0 ∈ L1(ℝ) ∩ BV (ℝ) such that u0 - u0,x is a positive Radon measure, then one can construct a sequence of multi-shockpeakons which converges to the unique entropy weak solution in ℝ x [0, T) for any T > 0. From this convergence result, we construct a multi-shockpeakon based numerical scheme for solving the DP equation.

dc.format.extent22 pages
dc.format.medium1 file (.pdf)
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectShallow water equationen_US
dc.subjectNumerical schemeen_US
dc.subjectEntropy weak solutionen_US
dc.subjectShockpeakon collisionen_US
dc.titleA numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equationen_US
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



This item appears in the following Collection(s)

Show simple item record