Show simple item record

dc.contributor.authorKrisner, Edward P. ( )
dc.date.accessioned2021-08-13T17:35:37Z
dc.date.available2021-08-13T17:35:37Z
dc.date.issued2007-07-25
dc.identifier.citationKrisner, E. P. (2007). Periodic solutions of a one Dimensional Wilson-Cowan type model. Electronic Journal of Differential Equations, 2007(102), pp. 1-22.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14318
dc.description.abstractWe analyze a time independent integral equation defined on a spatially extended domain which arises in the modeling of neuronal networks. In our survey, the coupling function is oscillatory and the firing rate is a smooth "heaviside-like" function. We will derive an associated fourth order ODE and establish that any bounded solution of the ODE is also a solution of the integral equation. We will then apply shooting arguments to prove that the ODE has two "1-bump" periodic solutions.en_US
dc.formatText
dc.format.extent22 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectShootingen_US
dc.subjectPeriodicen_US
dc.subjectCouplingen_US
dc.subjectIntegro-differential equationen_US
dc.titlePeriodic solutions of a one Dimensional Wilson-Cowan type modelen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record