Show simple item record

dc.contributor.authorKmit, Irina ( )
dc.date.accessioned2021-08-17T17:40:12Z
dc.date.available2021-08-17T17:40:12Z
dc.date.issued2007-10-09
dc.identifier.citationKmit, I. (2007). A distributional solution to a hyperbolic problem arising in population dynamics. Electronic Journal of Differential Equations, 2007(132), pp. 1-23.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14346
dc.description.abstractWe consider a generalization of the Lotka-McKendrick problem describing the dynamics of an age-structured population with time-dependent vital rates. The generalization consists in allowing the initial and the boundary conditions to be derivatives of the Dirac measure. We construct a unique D'-solution in the framework of intrinsic multiplication of distributions. We also investigate the regularity of this solution.en_US
dc.formatText
dc.format.extent23 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectPopulation dynamicsen_US
dc.subjectHyperbolic equationen_US
dc.subjectIntegral conditionen_US
dc.subjectSingular dataen_US
dc.subjectDistributional solutionen_US
dc.titleA distributional solution to a hyperbolic problem arising in population dynamicsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record