Show simple item record

dc.contributor.authorTesfahun, Achenef ( )
dc.date.accessioned2021-08-18T18:12:48Z
dc.date.available2021-08-18T18:12:48Z
dc.date.issued2007-11-21
dc.identifier.citationTesfahun, A. (2007). Low regularity and local well-posedness for the 1+3 dimensional Dirac-Klein-Gordon system. Electronic Journal of Differential Equations, 2007(162), pp. 1-26.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14376
dc.description.abstractWe prove that the Cauchy problem for the Dirac-Klein-Gordon system of equations in 1+3 dimensions is locally well-posed in a range of Sobolev spaces for the Dirac spinor and the meson field. The result contains and extends the earlier known results for the same problem. Our proof relies on the null structure in the system, and bilinear spacetime estimates of Klainerman-Machedon type.en_US
dc.formatText
dc.format.extent26 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectDirac equationen_US
dc.subjectKlein-Gordon equationen_US
dc.subjectLow regular solutionsen_US
dc.subjectLocal well-posednessen_US
dc.titleLow regularity and local well-posedness for the 1+3 dimensional Dirac-Klein-Gordon systemen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record