Show simple item record

dc.contributor.authorRath, Radhanath ( Orcid Icon 0000-0001-7375-4354 )
dc.contributor.authorMisra, Niyati ( )
dc.contributor.authorMishra, Prayag Prasad ( )
dc.contributor.authorPadhy, Laxmi Narayan ( Orcid Icon 0000-0001-6162-4472 )
dc.date.accessioned2021-08-18T18:23:52Z
dc.date.available2021-08-18T18:23:52Z
dc.date.issued2007-11-30
dc.identifier.citationRath, R., Misra, N., Mishra, P. P., & Padhy, L. N. (2007). Non-oscillatory behaviour of higher order functional differential equations of neutral type. Electronic Journal of Differential Equations, 2007(163), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14377
dc.description.abstractIn this paper, we obtain sufficient conditions so that the neutral functional differential equation [r(t)[y(t) - p(t)y(τ(t))]′](n-1) + q(t)G(y(h(t))) = ƒ(t) has a bounded and positive solution. Here n ≥ 2; q, τ, h are continuous functions with q(t) ≥ 0; h(t) and τ(t) are increasing functions which are less than t, and approach infinity as t → ∞. In our work, r(t) ≡ 1 is admissible, and neither we assume that G is non-decreasing, that xG(x) > 0 for x ≠ 0, nor that G is Lipschitzian. Hence the results of this paper generalize many results in [1] and [4]-[8].
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectOscillatory solutionen_US
dc.subjectNonoscillatory solutionen_US
dc.subjectAsymptotic behaviouren_US
dc.titleNon-oscillatory behaviour of higher order functional differential equations of neutral typeen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record