Show simple item record

dc.contributor.authorAzzam-Laouir, Dalila ( )
dc.contributor.authorBoutana, Imen ( Orcid Icon 0000-0002-2527-963X )
dc.date.accessioned2021-08-19T15:44:25Z
dc.date.available2021-08-19T15:44:25Z
dc.date.issued2007-12-06
dc.identifier.citationAzzam-Laouir, D., & Boutana, I. (2007). Application of Pettis integration to differential inclusions with three-point boundary conditions in Banach spaces. Electronic Journal of Differential Equations, 2007(173), pp. 1-8.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14392
dc.description.abstract

This paper provide some applications of Pettis integration to differential inclusions in Banach spaces with three point boundary conditions of the form

ü(t) ∈ F(t, u(t), u̇(t)) + H(t, u(t), u̇(t)), a.e. t ∈ [0, 1],

where F is a convex valued multifunction upper semicontinuous on E x E and H is a lower semicontinuous multifunction. The existence of solutions is obtained under the non convexity condition for the multifunction H, and the assumption that F(t, x, y) ⊂ Γ1(t), H(t, x, y) ⊂ Γ2(t), where the multifunctions Γ1, Γ2 : [0, 1] ⇉ E are uniformly Pettis integrable.

dc.formatText
dc.format.extent9 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectDifferential inclusionsen_US
dc.subjectPettis-integrationen_US
dc.subjectSelectionsen_US
dc.titleApplication of Pettis integration to differential inclusions with three-point boundary conditions in Banach spacesen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record