Localized nodal solutions for parameter-dependent quasilinear Schrödinger equations
dc.contributor.author | He, Rui ( ) | |
dc.contributor.author | Liu, Xiangqing ( ) | |
dc.date.accessioned | 2021-08-19T19:50:21Z | |
dc.date.available | 2021-08-19T19:50:21Z | |
dc.date.issued | 2021-01-25 | |
dc.identifier.citation | He, R., & Liu, X. (2021). Localized nodal solutions for parameter-dependent quasilinear Schrödinger equations. Electronic Journal of Differential Equations, 2021(05), pp. 1-21. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/14402 | |
dc.description.abstract | In this article, we apply a new variational perturbation method to study the existence of localized nodal solutions for parameter-dependent semiclassical quasilinear Schrödinger equations, under a certain parametric conditions. | en_US |
dc.format | Text | |
dc.format.extent | 20 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Texas State University, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas. | |
dc.subject | Quasilinear Schrödinger equation | en_US |
dc.subject | Perturbation method | en_US |
dc.subject | Truncation technique | en_US |
dc.subject | Nodal solution | en_US |
dc.title | Localized nodal solutions for parameter-dependent quasilinear Schrödinger equations | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. | |
dc.description.department | Mathematics |