Show simple item record

dc.contributor.authorAntontsev, Stanislav ( Orcid Icon 0000-0002-9469-9902 )
dc.contributor.authorFerreira, Jorge ( )
dc.contributor.authorPiskin, Erhan ( )
dc.date.accessioned2021-08-19T20:03:45Z
dc.date.available2021-08-19T20:03:45Z
dc.date.issued2021-01-29
dc.identifier.citationAntontsev, S., Ferreira, J., & Piskin, E. (2021). Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearities. Electronic Journal of Differential Equations, 2021(06), pp. 1-18.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14403
dc.description.abstractIn this article, we consider a nonlinear plate (or beam) Petrovsky equation with strong damping and source terms with variable exponents. By using the Banach contraction mapping principle we obtain local weak solutions, under suitable assumptions on the variable exponents p(.) and q(.). Then we show that the solution is global if p(.) ≥ q(.). Also, we prove that a solution with negative initial energy and p(.)en_US
dc.formatText
dc.format.extent18 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectGlobal solutionen_US
dc.subjectBlow upen_US
dc.subjectPetrovsky equationen_US
dc.subjectVariable-exponent nonlinearitiesen_US
dc.titleExistence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearitiesen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record