Solutions of Kirchhoff plate equations with internal damping and logarithmic nonlinearity
Date
2021-03-29Metadata
Show full metadataAbstract
In this article we study the existence of weak solutions for the nonlinear initial boundary value problem of the Kirchhoff equation
utt + Δ2u + M(∥∇u∥2) (-Δu) + ut = u ln |u|2, in Ω x (0, T),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = ∂u/∂η (x, t) = 0, x ∈ ∂Ω, t ≥ 0,
where Ω is a bounded domain in ℝ2 with smooth boundary ∂Ω, T > 0 is a fixed but arbitrary real number, M(s) is a continuous function on [0, +∞) and η is the unit outward normal on ∂Ω. Our results are obtained using the Galerkin method, compactness approach, potential well corresponding to the logarithmic nonlinearity, and the energy estimates due to Nakao.
Citation
Pereira, D., Cordeiro, S., Raposo, C., & Maranhão, C. (2021). Solutions of Kirchhoff plate equations with internal damping and logarithmic nonlinearity. Electronic Journal of Differential Equations, 2021(21), pp. 1-14.Rights License

This work is licensed under a Creative Commons Attribution 4.0 International License.