Show simple item record

dc.contributor.authorAnello, Giovanni ( Orcid Icon 0000-0002-6460-9785 )
dc.date.accessioned2021-08-23T17:52:53Z
dc.date.available2021-08-23T17:52:53Z
dc.date.issued2021-04-20
dc.identifier.citationAnello, G. (2021). Positive solutions to a Dirichlet problem with non-Lipschitz nonlinearities. Electronic Journal of Differential Equations, 2021(30), pp. 1-9.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14427
dc.description.abstract

Let Ω be a bounded smooth domain in ℝN. We study the existence of positive solutions to the Dirichlet problem

-Δu = (1 - u)us-1 - λur-1, in Ω,
u = 0, on ∂Ω,

where 1 < r < s ≤ 2, and λ > 0. In particular, we answer to some questions posed in the recent paper [3] where this problem was considered.

dc.formatText
dc.format.extent9 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectPositive solutionen_US
dc.subjectNon-Lipschitz nonlinearityen_US
dc.subjectVariational methodsen_US
dc.titlePositive solutions to a Dirichlet problem with non-Lipschitz nonlinearitiesen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record