Show simple item record

dc.contributor.authorLi, Xiaoyan ( )
dc.contributor.authorYang, Bian-Xia ( )
dc.date.accessioned2021-08-23T18:49:52Z
dc.date.available2021-08-23T18:49:52Z
dc.date.issued2021-04-24
dc.identifier.citationLi, X., & Yang, B. X. (2021). Existence and multiplicity for radially symmetric solutions to Hamilton-Jacobi-Bellman equations. Electronic Journal of Differential Equations, 2021(31), pp. 1-19.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14428
dc.description.abstract

This article concerns the existence and multiplicity of radially symmetric nodal solutions to the nonlinear equation

-M±C (D2u) = μƒ(u) in B,
u = 0 on ∂B,

M±C are general Hamilton-Jacobi-Bellman operators, μ is a real parameter and B is the unit ball. By using bifurcation theory, we determine the range of parameter μ in which the above problem has one or multiple nodal solutions according to the behavior of ƒ at 0 and ∞, and whether ƒ satisfies the signum condition ƒ(s)s > 0 for s ≠ 0 or not.

dc.formatText
dc.format.extent19 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectRadially symmetric solutionen_US
dc.subjectExtremal operatorsen_US
dc.subjectBifurcationen_US
dc.subjectNodal solutionen_US
dc.titleExistence and multiplicity for radially symmetric solutions to Hamilton-Jacobi-Bellman equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record