Show simple item record

dc.contributor.authorDiz-Pita, Erika ( Orcid Icon 0000-0002-7086-6614 )
dc.contributor.authorLlibre, Jaume ( Orcid Icon 0000-0002-9511-5999 )
dc.contributor.authorOtero-Espinar, M. Victoria ( Orcid Icon 0000-0002-0201-0523 )
dc.date.accessioned2021-08-23T19:48:39Z
dc.date.available2021-08-23T19:48:39Z
dc.date.issued2021-05-03
dc.identifier.citationDiz-Pita, É., Llibre, J., & Otero-Espinar, M. V. (2021). Phase portraits of a family of Kolmogorov systems depending on six parameters. Electronic Journal of Differential Equations, 2021(35), pp. 1-38.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14432
dc.description.abstractWe consider a general 3-dimensional Lotka-Volterra system with a rational first integral of degree two of the form H = xi yj zk. The restriction of this Lotka-Volterra system to each surface H(x, y, z) = h varying h ∈ ℝ provide Kolmogorov systems. With the additional assumption that they have a Darboux invariant of the form xℓ ym est they reduce to the Kolmogorov systems ẋ = x(α0 - μ(c1x + c2z2 + c3z)), z = z(c0 + c1x + c2z2 + c3z). We classify the phase portraits in the Poincaré disc of all these Kolmogorov systems which depend on six parameters.
dc.formatText
dc.format.extent38 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectKolmogorov systemen_US
dc.subjectLotka-Volterra systemen_US
dc.subjectPhase portraiten_US
dc.subjectPoincare discen_US
dc.titlePhase portraits of a family of Kolmogorov systems depending on six parametersen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record