Show simple item record

dc.contributor.authorLi, Mengyuan ( )
dc.contributor.authorLiu, Qihuai ( )
dc.date.accessioned2021-08-27T17:16:32Z
dc.date.available2021-08-27T17:16:32Z
dc.date.issued2021-07-08
dc.identifier.citationLi, M., & Liu, Q. (2021). Periodic orbits of the spatial anisotropic Kepler problem with anisotropic perturbations. Electronic Journal of Differential Equations, 2021(63), pp. 1-42.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14473
dc.description.abstractIn this article, we study the periodic orbits of the spatial anisotropic Kepler problem with anisotropic perturbations on each negative energy surface, where the perturbations are homogeneous functions of arbitrary integer degree p. By choosing the different ranges of a parameter β, we show that there exist at least 6 periodic solutions for p > 1, while there exist at least 2 periodic solutions for p ≤ 1 on each negative energy surface. The proofs of main results are based on symplectic Delaunay coordinates, residue theorem, and averaging theory.en_US
dc.formatText
dc.format.extent42 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectPeriodic orbiten_US
dc.subjectAveraging theoryen_US
dc.subjectResidue theoremen_US
dc.subjectSpatial anisotropic Kepler problemen_US
dc.titlePeriodic orbits of the spatial anisotropic Kepler problem with anisotropic perturbationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record