Show simple item record

dc.contributor.authorIdczak, Dariusz ( )
dc.date.accessioned2021-08-27T17:22:59Z
dc.date.available2021-08-27T17:22:59Z
dc.date.issued2021-07-12
dc.identifier.citationIdczak, D. (2021). Sensitivity of a nonlinear ordinary BVP with fractional Dirichlet-Laplace operator. Electronic Journal of Differential Equations, 2021(64), pp. 1-19.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14474
dc.description.abstractIn this article, we derive a sensitivity result for a nonlinear fractional ordinary elliptic system on a bounded interval with Dirichlet boundary conditions. More precisely, using a global implicit function theorem, we show that for each functional parameter there exists a unique solution, and that its dependence on the functional parameters is continuously differentiable.en_US
dc.formatText
dc.format.extent19 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFractional Dirichlet-Laplace operatoren_US
dc.subjectPalais-Smale conditionen_US
dc.subjectStone-von Neumann operator calculusen_US
dc.subjectGlobal implicit function theoremen_US
dc.titleSensitivity of a nonlinear ordinary BVP with fractional Dirichlet-Laplace operatoren_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record