Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group
Date
2020-01-07Metadata
Show full metadataAbstract
We consider the higher order diffusion Schrödinger equation with a time nonlocal nonlinearity
i∂tu - (-Δℍ)mu = λ/Γ(α) ∫t0 (t - s)α-1 |u(s)|pds,
posed in (η, t) ∈ ℍ x (0, +∞), supplemented with an initial data u(η, 0) = ƒ(η), where m > 1, p > 1, < α < 1, and Δℍ is the Laplacian operator on the (2N + 1)-dimensional Heisenberg group ℍ. Then, we prove a blow up result for its solutions. Furthermore, we give an upper bound estimate of the life span of blow up solutions.
Citation
Alsaedi, A., Ahmad, B., Kirane, M., & Nabti, A. (2020). Lifespan of solutions of a fractional evolution equation with higher order diffusion on the Heisenberg group. Electronic Journal of Differential Equations, 2020(02), pp. 1-10.Rights License

This work is licensed under a Creative Commons Attribution 4.0 International License.