Show simple item record

dc.contributor.authorYao, Shuai ( Orcid Icon 0000-0002-8685-8459 )
dc.contributor.authorSun, Juntao ( Orcid Icon 0000-0002-5837-1440 )
dc.contributor.authorWu, Tsung-fang ( Orcid Icon 0000-0003-4945-652X )
dc.date.accessioned2021-09-17T19:29:39Z
dc.date.available2021-09-17T19:29:39Z
dc.date.issued2020-01-10
dc.identifier.citationYao, S., Sun, J., & Wu, T. F. (2020). Stationary quantum Zakharov systems involving a higher competing perturbation. Electronic Journal of Differential Equations, 2020(06), pp. 1-18.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14502
dc.description.abstractWe consider the stationary quantum Zakharov system with a higher competing perturbation Δ2u - Δu + λV(x)u = K(x)uφ - μ|u|p-2u in ℝ3, -Δφ + φ = K(x)u2 in ℝ3, where λ > 0, μ > 0, p > 4 and functions V and K are both nonnegative. Such problem can not be studied via the common arguments in variational methods, since Palais-Smale sequences may not be bounded. Using a constraint approach proposed by us recently, we prove the existence, multiplicity and concentration of nontrivial solutions for the above problem.
dc.formatText
dc.format.extent18 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectQuantum Zakharov systemen_US
dc.subjectVariational methodsen_US
dc.subjectMultiple solutionsen_US
dc.titleStationary quantum Zakharov systems involving a higher competing perturbationen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record