Show simple item record

dc.contributor.authorPapageorgiou, Nikolaos S. ( )
dc.contributor.authorVetro, Catogero ( )
dc.contributor.authorVetro, Francesca ( Orcid Icon 0000-0001-7448-5299 )
dc.date.accessioned2021-09-21T14:36:05Z
dc.date.available2021-09-21T14:36:05Z
dc.date.issued2020-01-24
dc.identifier.citationPapageorgiou, N. S., Vetro, C., & Vetro, F. (2020). Positive and nodal solutions for nonlinear nonhomogeneous parametric Neumann problems. Electronic Journal of Differential Equations, 2020(12), pp. 1-20.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14516
dc.description.abstractWe consider a parametric Neumann problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential term. The reaction term is superlinear but does not satisfy the Ambrosetti-Rabinowitz condition. First we prove a bifurcation-type result describing in a precise way the dependence of the set of positive solutions on the parameter λ > 0. We also show the existence of a smallest positive solution. Similar results hold for the negative solutions and in this case we have a biggest negative solution. Finally using the extremal constant sign solutions we produce a smooth nodal solution.en_US
dc.formatText
dc.format.extent20 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectNonlinear nonhomogeneous differential operatoren_US
dc.subjectNonlinear Regularity Theoryen_US
dc.subjectNonlinear maximum principleen_US
dc.subjectStrong comparisonen_US
dc.subjectBifurcation-type theoremen_US
dc.subjectNodal solutionen_US
dc.subjectCritical groupen_US
dc.titlePositive and nodal solutions for nonlinear nonhomogeneous parametric Neumann problemsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record