Show simple item record

dc.contributor.authorFan, Jishan ( Orcid Icon 0000-0001-5001-2462 )
dc.contributor.authorZhou, Yong ( )
dc.date.accessioned2021-09-21T15:45:55Z
dc.date.available2021-09-21T15:45:55Z
dc.date.issued2020-02-11
dc.identifier.citationFan, J., & Zhou, Y. (2020). Existence and uniqueness for a Ginzburg-Landau system for superconductivity. Electronic Journal of Differential Equations, 2020(17), pp. 1-6.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14521
dc.description.abstractWe prove the existence of a unique solution for a time-dependent Ginzburg-Landau model in superconductivity under the Coulomb gauge. Also we prove the uniform-in-ε well-posedness of the solution, where ε is the coefficient of the double-well potential energy.en_US
dc.formatText
dc.format.extent6 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectGinzburg-Landau modelen_US
dc.subjectSuperconductivityen_US
dc.subjectCoulomb gaugeen_US
dc.titleExistence and uniqueness for a Ginzburg-Landau system for superconductivityen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record