Show simple item record

dc.contributor.authorCuesta, Mabel ( Orcid Icon 0000-0002-8576-3941 )
dc.contributor.authorLeadi, Liamidi ( )
dc.contributor.authorNshimirimana, Pascaline ( )
dc.date.accessioned2021-09-21T18:34:50Z
dc.date.available2021-09-21T18:34:50Z
dc.date.issued2020-03-02
dc.identifier.citationCuesta, M., Leadi, L., & Nshimirimana, P. (2020). Maximum and antimaximum principles for the p-Laplacian with weighted Steklov boundary conditions. Electronic Journal of Differential Equations, 2020(21), pp. 1-17.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14525
dc.description.abstractWe study the maximum and antimaximum principles for the p-Laplacian operator under Steklov boundary conditions with an indefinite weight -Δpu + |u|p-2 u = 0 in Ω, |∇u|p-2 ∂u/∂v = λm(x)|u|p-2 u + h(x) on ∂Ω, where Ω is a smooth bounded domain of ℝN, N > 1. After reviewing some elementary properties of the principal eigenvalues of the p-Laplacian under Steklov boundary conditions with an indefinite weight, we investigate the maximum and antimaximum principles for this problem. Also we give a characterization for the interval of the validity of the uniform antimaximum principle.
dc.formatText
dc.format.extent17 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectp-Laplacianen_US
dc.subjectSteklov boundary conditionsen_US
dc.subjectIndefinite weighten_US
dc.subjectMaximum and antimaximum principlesen_US
dc.titleMaximum and antimaximum principles for the p-Laplacian with weighted Steklov boundary conditionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record