Show simple item record

dc.contributor.authorLouis-Rose, Carole ( )
dc.date.accessioned2021-09-22T14:10:17Z
dc.date.available2021-09-22T14:10:17Z
dc.date.issued2020-03-27
dc.identifier.citationLouis-Rose, C. (2020). Null controllability from the exterior of fractional parabolic-elliptic coupled systems. Electronic Journal of Differential Equations, 2020(26), pp. 1-18.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14530
dc.description.abstractWe analyze the null controllability properties from the exterior of two parabolic-elliptic coupled systems governed by the fractional Laplacian (-d2x)s, s ∈ (0, 1), in one space dimension. In each system, the control is located on a non-empty open set of ℝ / (0, 1). Using the spectral theory of the fractional Laplacian and a unique continuation principle for the dual equation, we show that the problem is null controllable if and only if 1/2 < s < 1.
dc.formatText
dc.format.extent18 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectControllabilityen_US
dc.subjectFractional partial differential equationen_US
dc.subjectLinear systemen_US
dc.subjectSeries solutionen_US
dc.subjectEigenvalue problemen_US
dc.titleNull controllability from the exterior of fractional parabolic-elliptic coupled systemsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record