Show simple item record

dc.contributor.authorGuo, Zijun ( )
dc.contributor.authorZhang, Qingye ( )
dc.date.accessioned2021-09-22T15:32:06Z
dc.date.available2021-09-22T15:32:06Z
dc.date.issued2020-04-06
dc.identifier.citationGuo, Z., & Zhang, Q. (2020). Existence of solutions to fractional Hamiltonian systems with local superquadratic conditions. Electronic Journal of Differential Equations, 2020(29), pp. 1-12.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14533
dc.description.abstractIn this article, we study the existence of solutions for the fractional Hamiltonian system tDα∞ (-∞Dαtu(t)) + L(t)u(t) = ∇W(t, u(t)), u ∈ Hα (ℝ, ℝN), where tDα∞ and -∞Dαt are the Liouville-Weyl fractional derivatives of order 1/2 < α < 1, L ∈ C (ℝ, ℝNxN) is a symmetric matrix-valued function, which is unnecessarily required to be coercive, and W ∈ C1 (ℝ x ℝN, ℝ) satisfies some kind of local superquadratic conditions, which is rather weaker than the usual Ambrosetti-Rabinowitz condition.
dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFractional Hamiltonian systemen_US
dc.subjectVariational methoden_US
dc.subjectSuperquadraticen_US
dc.titleExistence of solutions to fractional Hamiltonian systems with local superquadratic conditionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record