Show simple item record

dc.contributor.authorSu, Si ( )
dc.contributor.authorZhang, Guo-Bao ( )
dc.date.accessioned2021-09-28T21:29:55Z
dc.date.available2021-09-28T21:29:55Z
dc.date.issued2020-05-19
dc.identifier.citationSu, S., & Zhang, G. B. (2020). Global stability of traveling waves for delay reaction-diffusion systems without quasi-monotonicity. Electronic Journal of Differential Equations, 2020(46), pp. 1-18.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14553
dc.description.abstractThis article concerns the global stability of traveling waves of a reaction-diffusion system with delay and without quasi-monotonicity. We prove that the traveling waves (monotone or non-monotone) are exponentially stable in L∞ (ℝ) with the exponential convergence rate t-1/2 e-μt for some constant μ > 0. We use the Fourier transform and the weighted energy method with a suitably weight function.
dc.formatText
dc.format.extent18 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectDelay reaction-diffusion systemen_US
dc.subjectTraveling wavesen_US
dc.subjectGlobal stabilityen_US
dc.subjectFourier transformen_US
dc.subjectWeighted energy methoden_US
dc.titleGlobal stability of traveling waves for delay reaction-diffusion systems without quasi-monotonicityen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record